code.scan!

by autorabit

Addressing Metadata in Salesforce
Security Posture Management

Metadata security is an important factor in maintaining reliable functionality in your
Salesforce environment. A comprehensive approach is essential to preserving the integrity
of this important pool of data.

Here are 8 steps to addressing metadata in Salesforce security posture management:

1 Identify Your Types of Metadata

Understanding the differences between these
types of metadata will help you put together a
better plan for metadata security.

2 Perform a Risk Assessment

A risk assessment improves visibility into how your
Salesforce metadata is used, while also
highlighting which sets of data are more sensitive
and need to be protected.

3 Analyze Permissions Settings

Team members should only be able to access the
data they need to perform their daily duties.
Overexposed metadata is much more likely to
experience accidental deletions or costly
corruptions.

4 Secure Access Points

Secure passwords and multi-factor authentication
are necessities for every member of your
organization with access to your Salesforce
environment.

5 Utilize Version Control

Version control enables teams to monitor the
accuracy of each change, which allows them to
identify potential issues with their metadata and take
the security precautions necessary to protect it.

6 Seta Schedule to Review Security Policies

Metadata security is an essential aspect of Salesforce security
posture management and needs to be continually addressed.

7 Provide Security Training to Team Members

A repeated cycle of cybersecurity training keeps best practices
fresh in the minds of your team members and works to maintain
the integrity of your Salesforce data and metadata.

8 Backup Everything

Frequent backups of a Salesforce environment will
provide the coverage necessary to get your system
back online quickly and efficiently to minimize

downtime.
116 {
117 i float* p = (float*)cvGetSegElem(circles, 1);
118 i uchar* ptr = cvPtr2D(img, cvRound(p[l]), cvRound(p[0]), NULL);
119 '
120 ' double region size = 7;
121 : double red_avg = 0;
122 : double green avg = 0;
123 [double blue avg = 0;
124
125 - for (int y=-floor(region_size/2); y<ceil(region_size/2); y++)
126 E ' {
127 i i uchar* ptrl = (uchar*) (ptr + y * img->widthStep):;
128 - i for(int x=-floor (region size/2); x<ceil (region size/2); x++)
NES - : {
130 : f i blue avg += ptr[3*x]:
131 : : § green_avg += ptr[3*x+1];
1557 : f f red avg += ptr[3*x+2];
133 _ | }
134 . }
135 ' red_avg = red avg/(region_size*region_size);
136 i green avg = green avg/ (region size*region size):;
137 ; blue avg = blue avg/(region size*region_size);
138
139 bool color = (green_avg-150)* (green_avg-150)<900 && (blue_avg-100)* (blue_avg-100)<400 && (red_a
140 .
141 i if (color)
142 {
143 ! cvCircle(rgbimg, cvPoint (cvRound (p[0]),cvRound(p[1l])).,
144 . 3 : | 3, €V _RGE(0,255,0), =1, &; B ji;
145 i i CvCircle(rgbimg, cvPoint (cvRound(p[0]),cvRound(p[1])),
146 _ : g | cvRound (p[2]), CV _RGB(255,0,0), 3, 8, 0):
147 ; = : :
148 ; 5 if(d': get_actual_depth (cvGet2D (depthimg, cvRound(p[l]), cvRound(p[0])).val[0]))
149 ¢ . | {
150 i ; i tempLandmark->detected = true;
]l G i i g X = 320.5 - cvRound(p[0]);
152 : : mu = (240.5 - cvRound(p[l]))*d/FOCAL_LENGTH;
153 ' W =

X*d/FOCAL_LENGTH:

10 A : H H RIS, SRR, ARG, PR . e L I _ AN A ON T

